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e-mail: tobojd@mimuw.edu.pl e-mail:gortega@servidor.unam.mx

Abstract. For a random element X of a nuclear space of distributions on Wiener space C([0, 1],Rd), the

localization problem consists in “projecting” X at each time t ∈ [0, 1] in order to define an S ′(Rd)-valued

process X = {X(t), t ∈ [0, 1]}, called the time-localization of X. The convergence problem consists in

deriving weak convergence of time-localization processes (in C([0, 1],S ′(Rd)) in this paper) from weak

convergence of the corresponding random distributions on C([0, 1],Rd). Partial steps towards the solution

of this problem were carried out in [BG1, BGN], the tightness having remained unsolved. In this paper

we complete the solution of the convergence problem via an extension of the time-localization procedure.

As an example, a fluctuation limit of a system of fractional Brownian motions yields a new class of

S ′(Rd)-valued Gaussian processes, the “fractional Brownian density processes”.

Mathematics Subject Classifications (2000): 60F17, 60G20, 60G57, 60J65.

Key words: random distribution, Wiener space, time-localization, fluctuation limit, fractional Brownian

motion, fractional Brownian density process.

*Research supported by grant KBN 2P03AD1114 (Poland) and CONACyT grant 27932-E (Mexico).

1



1. Introduction

We begin by describing the problem treated in this paper for a reader acquainted with the subject.

Further down we give some background for the benefit of a non-acquainted reader and we introduce the

fractional Brownian density processes.

A nuclear space of distributions on the space of continuous functions C ≡ C([0, 1],Rd) was constructed

in [GN] for the purpose of providing an appropriate state space for trajectorial fluctuation limits of particle

systems (see the examples and the references in [GN], as well as the motivations and a detailed formulation

of the problem). Let us denote this space of distributions by S(C)′. The question of obtaining temporal

results for the convergence of the fluctuations from the trajectorial results was studied in [BG1] and

[BGN]. This involves the time-localization problem and the convergence problem. The time-localization

of a random element X of S(C)′ consists in “projecting” X at each t ∈ [0, 1] in order to define a process

X = {X(t), t ∈ [0, 1]} with values in S ′ ≡ S ′(Rd) (the space of tempered distributions on Rd, which is

the dual of the spaces S ≡ S(Rd) of C∞ rapidly decreasing functions). The process X is called the time-

localization of X. In the convergence problem one has a sequence (Xn)n of random elements of S(C)′ which

converge weakly and, assuming that they can be time-localized, one wishes to know if the corresponding

time-localization processes (Xn)n also converge weakly. This is not a straightforward matter because,

assuming that the processes Xn have trajectories in the space of continuous functions C([0, 1],S ′), there is

no direct relationship between the topologies of S(C)′ and C([0, 1],S ′) which would allow to conclude by

means of a continuous mapping theorem. The time-localization already poses technical problems because

the projection procedure involves functions on C that do not belong to the space of test functions S(C)

which is paired with S(C)′. Hence some additional technical conditions must be imposed in order to

pass from the trajectorial analysis to the temporal analysis. This passage has been partially achieved

in [BG1] and [BGN], the main question left open being the tightness of the time-localizations. In this

paper we refine the time-localization method developed in [BGN] in a way which in some important

cases solves the question of convergence of the time-localizations, including the tightness. The idea of

the time-localization was introduced in [G2] in an intuitive way.

This scheme for proving convergence of temporal fluctuations, i.e., first “going up” to the trajectorial

approach for the proof of convergence of fluctuations and then “coming back down” by means of time-

localization, is apparently awkward. However, it is useful because it turns out to be easier to apply for

some particle systems than proving convergence in C([0, 1],S ′) directly. Moreover, the Markov property

or associated martingales that the systems may have, play no role in our approach. Temporal fluctuation
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limits have been obtained for many particle systems by several authors, starting with the papers of Martin

Löf [ML] and Holley and Stroock [HS]. The present method is useful for a class of systems which includes

those in [ML, I1], and also for an analogous system of fractional Brownian motions, which yields a new

S ′(Rd)-valued Gaussian process described at the end of the Introduction.

In order to fix ideas let us consider a Poisson system of particles in Rd. For each x ∈ Rd, let

ξx = {ξx(t), t ∈ [0, 1]} denote a continuous process starting from x. The processes ξx can be for example

trajectories of a given diffusion, or translations (by x) of a given process. Let Π be a Poisson random

measure on Rd with (σ-finite) intensity measure µ. The system is defined by letting the process ξx evolve

from each point x of Π, these processes being independent. We rescale by taking the intensity of the

Poisson measure to be nµ, n > 0, and we denote the Poisson measure by Πn. Let

Nn(t) =
∞∑
i=1

δξxi (t), t ∈ [0, 1], (1.1)

where {xi}i are the points of Πn. Thus Nn(t) is the empirical measure of the system at time t. Consider

the fluctuation

Xn(t) =
1√
n

(Nn(t)− ENn(t)), t ∈ [0, 1], (1.2)

which defines a signed measure valued process. The temporal fluctuation limit result for the Poisson

system is the following assertion, which holds under some additional assumptions on the processes ξx.

1.1. ASSERTION. Xn converges weakly in C([0, 1],S ′) as n → ∞ to the centered Gaussian process

X = {X(t), t ∈ [0, 1]} with covariance functional

Cov(〈X(s), ϕ〉, 〈X(t), ψ〉) =
∫
Rd
Eϕ(ξx(s))ψ(ξx(t))µ(dx), ϕ, ψ ∈ S. (1.3)

Our objective is to prove Assertion 1.1 by means of the trajectorial and time-localization approach.

For the Poisson system, let us now describe the approach based on trajectorial convergence of the

fluctuations and time-localization. Let

Nn =
∞∑
i=1

δξxi , (1.4)

where {xi}i are the points of Πn as above, but now δω is the Dirac measure at ω ∈ C. Hence Nn is

a random point measure on C, which is the trajectorial empirical measure of the system. Consider the

fluctuation

Xn =
1√
n

(Nn − ENn), (1.5)
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which is a random signed measure on C. The trajectorial fluctuation limit of the Poisson system is given

in the following theorem.

1.2. THEOREM. Xn converges weakly in S(C)′ as n → ∞ to a centered Gaussian random element X

with covariance functional

Cov(〈X, F 〉, 〈X, G〉) =
∫
C

FGdM, F,G ∈ S(C), (1.6)

where M is the measure on C defined by

dM = dMxµ(dx) (1.7)

and Mx is the distribution measure on C of the process ξx, provided that
∫
C
F 2dM <∞ for all F ∈ S(C).

(X can be described as the “white noise” on C based on M).

Trajectorial fluctuation limits of particle systems (which are stochastic models of interest by them-

selves) have been obtained in [ML, G1, T, S], but they were not expressed as weak convergence of random

elements of some space because an appropriate state space such as S(C)′ was not available. The nu-

clearity of S(C)′ is important in order to have weak convergence. Note that the temporal fluctuation

limit in Assertion 1.1 depends only on the two-dimensional distributions of ξx, whereas the trajectorial

fluctuation limit in Theorem 1.2 depends on the whole distribution of ξx. Hence the trajectorial result is

more intimately connected with the motion process than the temporal one. A direct proof of Assertion

1.1 requires showing weak convergence of finite-dimensional distributions or some other approach that

identifies the limit (which may be difficult if the processes ξx do not have the Markov property) and

tightness. On the other hand, the proof of Theorem 1.2 is quite simple, as it is just an ordinary central

limit theorem for S(C)′-valued random variables. Our aim is to derive Assertion 1.1 from Theorem 1.2.

As we have said above, this is not automatic because Assertion 1.1 involves the topology of C, which has

no direct relation with the space S(C)′.

First of all, we need the “temporal” versions of the random elements Xn and X of S(C)′. They are

obtained by the time-localization procedure. The temporal version of the random element Xn defined by

(1.5) is the process Xn = {Xn(t), t ∈ [0, 1]} given by (1.2), and the temporal version of X in Theorem 1.2

is the process X = {X(t), t ∈ [0, 1]} described in Assertion 1.1.

In a general setting, the time-localization at time t ∈ [0, 1] of a random element Y of S(C)′ is intuitively

defined to be the random element Y (t) of S ′ such that

〈Y (t), ϕ〉 = 〈Y, Fϕ,t〉, ϕ ∈ S, (1.8)

where

Fϕ,t(ω) = ϕ(ω(t)), ω ∈ C. (1.9)
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However, the function Fϕ,t defined by (1.9) does not belong to the space of test functions S(C), and

therefore formula (1.8) does not make sense. The procedure of time-localization consists in formulating

conditions on random elements Y of S(C)′ under which it is possible to give a rigorous meaning to formula

(1.8), and showing that Y satisfies such conditions. It turns out that this can be done in some cases by

means of an “admissible measure” associated to Y (Definition 2.1). The time-localization result is given

in Theorem 2.7. For the random element X of S(C)′ in Theorem 1.2 an admissible measure is precisely

M given by (1.7).

With a slightly stronger condition on an admissible measure associated to Y it is possible to show the

time-localization process Y = {Y (t), t ∈ [0, 1]} has a version in C([0, 1],S ′) (see Proposition 2.8).

For a sequence of random elements {Yn}n of S(C)′ which convergence weakly to Y, in order to obtain

the convergence of the time-localization processes the idea is to have a common admissible measure

associated to all the Yn and Y, which yields the time-localizations for all of them, and such that with

some additional requirement provides also the weak-convergence of finite-dimensional distributions and

the tightness of the time-localization processes. This is the subject of Proposition 3.1, Corollary 3.2 and

Theorem 3.4.

To sum up, in this scheme proving weak convergence of random elements of C([0, 1],S ′) consists in

showing first that the trajectorial versions converge weakly in S(C)′, and then showing that a common

admissible measure for the approximations and the limit satisfies the required conditions. Note that the

technical questions regarding to the topology of C([0, 1],S ′), in particular those related with the tightness,

have been trasformed into conditions on the associated admissible measure.

We now recall briefly the space of distributions on C which we have denoted above by S(C)′. Let W x

denote the Wiener measure on C supported on the functions that take the value x ∈ Rd at t = 0, and let

λ designate the Lebesgue measure on Rd. Define the σ-finite measure W on C by

dW = dW xλ(dx).

There exists a space of test functions S(Rd,H) on C such that

S(Rd,H) ⊂ L2(C,W) ⊂ S(Rd,H)′

is a nuclear Gelfand triple, where H is a space of test functions on C0 = {ω ∈ C : ω(0) = 0} such that

H ⊂ L2(C0,W
0) ⊂ H′

is also a nuclear Gelfand triple. S(Rd,H) is a space of smooth H-valued functions on Rd, and since

S(Rd,H) ∼= S⊗̂H, then S(Rd,H) can indeed be regarded as a space of functions on C. The spaces
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S(Rd,H) and S(Rd,H)′ are what we have denoted by S(C) and S(C)′, respectively. We will continue to

use this shorter notation. See [GN] for the construction of S(C)′.

Let us now go back to the Poisson systems discussed above. As examples of processes ξx we will take

the diffusions considered in [BG1], and we will also take fractional Brownian motions (fBm). FBm’s were

introduced by Kolmogorov [K]. The paper of Mandelbrot and Van Ness [MVN] generated considerable

interest in fBm and its applications to various fields (e.g.[Ta, M], we omit a long list of recent references).

It is worthwhile to note that fBm’s appear also as fluctuation limits of occupation times of Poisson

systems of Brownian motions [DW] (Theorem 0.4). A short proof of existence of fractional Brownian

fields is given in [BG3].

We recall that the fBm (in R) with Hurst parameter h ∈ (0, 1) is a continuous centered Gaussian

process ξ with covariance

Cov(ξ(s), ξ(t)) =
1
2

[t2h + s2h − |t− s|2h], t, s ≥ 0.

The fBm in Rd is the Gaussian process whose d components are independent one-dimensional fBm’s. This

process is self-similar, but it is Markovian only for h = 1
2 , which corresponds to the ordinary Brownian

motion. We denote by ξx the d-dimensional fBm started from x ∈ Rd (i.e. ξx is ξ0 translated by x). For

this case the above mentioned convergence and time-localization procedure can be carried out to prove

Assertion 1.1, and the covariance of the limit process X is given by

Cov(〈X(s), ϕ〉, 〈X(t), ψ〉)

= (π[(t− s)2h(2t2h + 2s2h − (t− s)2h)− (t2h − s2h)2])−d

·
∫
R3d

ϕ(y1, . . . , yd)ψ(z1, . . . , zd)

·exp
{
−2[(t− s)2h(2t2h + 2s2h − (t− s)2h)− (t2h − s2h)2]−1

·
(
t2h

d∑
i=1

(yi − xi)2 + s2h
d∑
i=1

(zi − xi)2 − (t2h + s2h − (t− s)2h)
d∑
i=1

(yi − xi)(zi − xi)
)}

dy1 . . . dyddz1 . . . dzdµ(dx1, . . . , dxd), s < t, ϕ, ψ ∈ S, (1.10)

Cov(〈X(t), ϕ〉, 〈X(t), ψ〉)

=
1

(2πt2h)d/2

∫
R2d

ϕ(y1, . . . , yd)ψ(y1, . . . , yd)exp
{
− 1

2t2h

d∑
i=1

(yi − xi)2

}

dy1 . . . dydµ(dx1, . . . , dxd), ϕ, ψ ∈ S. (1.11)

(see Proposition 4.6).

By analogy with the Brownian case, we call X the fractional Brownian density process with parameter
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h. Note that it is self-similar, i.e., the process {Xct, t ∈ [0, 1]} has the same distribution as the process

{chXt, t ∈ [0, 1]} for each constant c > 0, but it is Markovian only for h = 1
2 (for h 6= 1

2 the covariance

does not satisfy the condition which characterizes the Markov property for Gaussian S ′-processes [F]: for

r ≤ s < t, Cov(〈Xr, ϕ〉, 〈Xt, ψ〉) = Cov(〈Xr, ϕ〉, 〈Xs,t, ψ〉), where Xs,t is an S ′-valued random variable

such that 〈Xs,t, ψ〉 belongs to the L2-closure of {〈Xs, ϕ〉, ϕ ∈ S}). For h = 1
2 the covariance (1.10), (1.11)

reduces to

Cov(〈X(s), ϕ〉, 〈X(t), ψ〉)

=
1

(2πs)d/2(2π(t− s))d/2

∫
R3d

ϕ(y1, . . . , yd)ψ(z1, . . . , zd)

·exp
{
− 1

2s

d∑
i=1

(yi − xi)2 − 1
2(t− s)

d∑
i=1

(zi − yi)2

}
dy . . . dyddz1 . . . dzdµ(dx1, . . . , dxd),

s ≤ t,

and in the case µ = λ, X is the well-known Brownian density process [A, BG2].

1.3. REMARK. (1.11) can be obtained from (1.10) by taking limit as s→ t.

In addition to the Poisson systems discussed above, we will also consider systems of the type studied

by Itô [I1]. Although these systems are quite different from the Poisson model, it turns out that the same

scheme works for them with very minor changes. Moreover, the admissible measure is the same one for

both models.

The outline of the paper is as follows. In Section 2 we carry out the new time-localization. Section 3

deals with the convergence of the time-localization processes. Section 4 is devoted to the examples.

2. Lp-localization

In this section we show that the space L2 employed in [BG1, BGN] for the time-localization plays in

fact no special role and can be replaced by any Lp, p ≥ 1. We will use this extension later on.

Generic constants will be denoted by K,K1,K2, . . . , with dependencies on parameters in parenthesis.

First of all we recall the definition of an admissible measure.

2.1. DEFINITION. We say that a measure M on C is admissible if it has a desintegration of the form

dM = dMxµ(dx), (2.1)

where
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(i) µ is a σ-finite measure on Rd such that∫
Rd

(1 + |x|2)−kµ(dx) <∞ (2.2)

for some k ≥ 0, and

(ii) Mx is a probability measure on {ω ∈ C : ω(0) = x}, x ∈ Rd, such that the measure Mx
0 (·) := Mx(x+·)

satisfies ∫
Rd

(∫
C0

||ω||n∞Mx
0 (dω)

)2

(1 + |x|2)−kµ(dx) ≤ Jnn!, (2.3)

for all n = 1, 2, . . ., and for some constant J , where k is the same as in (2.2) and || · ||∞ stands for the

sup norm.

We also define the measure

M̃(dω) = (1 + |ω(0)|2)kM(dω), (2.4)

where k is as in (2.2).

Note that if Mx
0 does not depend on x, i.e., Mx

0 ≡M0, then, given (2.1), condition (2.3) is equivalent to∫
C0

||ω||n∞M0(dω) ≤ J1

√
n! (2.5)

for all n = 1, 2, . . . and for some constant J1.

We shall need be the following immediate generalization of Lemma 2.4 of [BGN].

2.2. LEMMA. Let M be an admissible measure, t ∈ [0, 1] and p ≥ 1. Then Fϕ,t ∈ Lp(C, M̃) for each

ϕ ∈ S, and the mapping ϕ 7→ Fϕ,t is continuous from S into Lp(C, M̃).

Proof. We argue as in the proof of Lemma 2.4 in [BGN] and we obtain∫
C

|Fϕ,t|pdM̃ ≤ K(k) sup
y∈Rd

(1 + |y|4k)|ϕ(y)|p,

hence the assertions follow since supy(1 + |y|4k)
1
p |ϕ(y)| is a continuous seminorm in S. 2

2.3. REMARK. By the definition of an admissible measure it is clear that the measure M̃ defined by

(2.4) can be replaced here by any measure of the form (1 + |ω(0)|2)qM(dω), q ≥ 1, and, moreover, we

have

sup
t∈[0,1]

∫
C

|Fϕ,t|p(1 + |ω(0)|2)qM(dω) <∞.

The following theorem is crucial for the time-localization procedure.

2.4. THEOREM. Let M be an admissible measure and p ≥ 1. Then
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(a) S(C) ⊂ Lp(C, M̃) and the embedding is continuous.

(b) For each t ∈ [0, 1] and ϕ ∈ S, the functional Fϕ,t belongs to SpM := the closure of S(C) in the

topology of Lp(C, M̃).

Proof. (a) We know that M ∈ S(C)′ [BGN] (Theorem 2.5). It follows from the proof of this fact that the

assertion is true for p = 1. Then it is also true for any natural p since we can replace F ∈ S(C) by F p

because we know that F p(x, ·) ∈ H. Now it is easily seen that it is true for any p ≥ 1 as well.

(b) We present only a sketch of the proof since the idea is the same as in the proof of Theorem 2.5(c)

in [BGN].

Fix any ψ ∈ C∞0 (Rd) (compact support) and t ∈ (0, 1]. It suffices to prove that

Fψ,0Fϕ,t ∈ S
p

M. (2.6)

Let

χ(B) =
∫
Rd

∫
Rd

1B(x+ y)Mx
0 ◦ π−1

t (dy)|ψ(x)|p(1 + |x|2)kµ(dx), B ∈ B(Rd),

where πt(ω) = ω(t). For each γ ∈ C∞(Rd) we have∫
C

|Fψ,0Fγ,t|pdM̃ =
∫
Rd
|γ|pχ(dx). (2.7)

Using the admissibility property (2.2) of M it can be proved that

mn =
∫
Rd
|x|nχ(dx) ≤ Kn

√
n!, n = 1, 2, . . . , (2.8)

hence γ ∈ Lp(Rd, χ) for each polynomial γ.

Let q = p
p−1 . For any f ∈ Lq(Rd, χ) we define dχ(f) = |f |dχ and m

(f)
n =

∫
|x|nχ(f)(dx). The Hölder

inequality, (2.8) and the Stirling formula imply that 1
n (m(f)

n )1/n → 0 as n → ∞, hence the measure

χ(f) is uniquely determined by its moments. From this we infer that if f ∈ Lq(Rd, χ) is such that∫
γ(x)f(x)χ(dx) = 0 for each polynomial γ, then f = 0 χ-a.e. As a consequence we obtain that the

polynomials are dense in Lp(Rd, χ) (see, e.g., [Tr], page 186, Corollary 1). By (2.7) it is now clear that

it suffices to prove (2.6) assuming that ϕ is a polynomial, and this fact can be shown in the same way as

in Step 4 of the proof of Theorem 2.5 of [BGN]. One should only replace the squares by the p-th powers

in the appropriate places. 2

The class of random elements of S(C)′ which can be time-localized is described in the next definition.

2.5. DEFINITION. A random element X of S(C)′ is said to be admissible if there exist an admissible

measure M and p ≥ 1 such that the mapping F 7→ 〈X, F 〉 is a continuous random linear functional (in
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the sense of [I2]) on S(C) with the topology induced by Lp(C, M̃). To stress the dependence on M and

p we will sometimes say that X is M-p-admissible.

This definition makes sense by Theorem 2.4(a). If X is M-p-admissible, its (unique) extension on SpM
will be denoted by XM,p(·). The next proposition implies that this extension in fact does not depend on

M and p on the functions of the form Fϕ,t, ϕ ∈ S, t ∈ [0, 1] (which belong to SpM by Theorem 2.4(b)).

2.6. PROPOSITION. Let M,M′ be admissible measures and p, p′ be arbitrary numbers ≥ 1. Then for

each ϕ ∈ S, t ∈ [0, 1], there exists a sequence (Fn)n of elements of S(C) such that Fn → Fϕ,t in Lp(C, M̃)

and in Lp
′
(C, M̃

′
) simultaneously.

Proof. The argument is a generalization of the proof of Corollary 2.6 of [BGN].

It is clear from the proof of Theorem 2.4 that it suffices to show that, given any ψ ∈ C∞0 (Rd), there

exists a sequence (vn)n of polynomials such that

Fψ,0Fvn,t → Fψ,0Fϕ,t as n→∞,

in Lp(C, M̃) and in Lp
′
(C, M̃

′
) simultaneously.

Let χp, χ′p′ be the measures defined in the proof of Theorem 2.4, corresponding to M, p and M′, p′,

respectively. (2.8) implies that
∫
|x|n(χp + χ′p′)(dx) ≤ Kn

2

√
n!, n = 1, 2, . . ., hence we infer that the

polynomials are dense in both Lp(Rd, χp + χ′p′) and Lp
′
(Rd, χp + χ′p′). Assume p ≤ p′. Let (vn)n be

polynomials converging to ϕ in Lp
′
(Rd, χp + χ′p′); then the convergence also holds in Lp(Rd, χp + χ′p′)

since χ′p + χ′p′ is a finite measure. Hence we obtain lim
n→∞

∫
|ϕ− vn|pdχp = lim

n→∞

∫
|ϕ− vn|p

′
dχ′p′ = 0. To

finish the proof it suffices to recall that∫
|Fψ,0|p|Fϕ,t − Fvn,t|pdM̃ =

∫
|ϕ− vn|pdχp,

and the same is true for M′, p′. 2

We are now ready to state the main result of this section.

2.7. THEOREM. Let X be an admissible random element of S(C)′. Then for each t ∈ [0, 1] there exists

a unique S ′-valued random variable X(t) such that for each M, p, if X is M-p-admissible, then

〈X(t), ϕ〉 = XM,p(Fϕ,t) a.s.

for all ϕ ∈ S. The process X = {X(t), t ∈ [0, 1]} is called the time-localization process of X.

Proof. If X isM-p-admissible, then Lemma 2.2 and Theorem 2.4 imply that the mapping ϕ 7→ XM,p(Fϕ,t)

is a continuous linear random functional on S. The existence of X(t) now follows from the regularization
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theorem since S is nuclear [I2]. Finally, Proposition 2.6 implies that X(t) does not depend on the

particular M, p. 2

We close this section with a generalization of Proposition 2.14 of [BGN]. This generalization is two-

fold: firstly, it concerns the present, more general, setup, and secondly, no restriction is imposed on the

Hölder exponent δ.

2.8. PROPOSITION. Let M be an admissible measure given by (2.1) such that∫
Rd

∫
C0

|ω(t)− ω(s)|qMx
0 (dω)(1 + |x|2)−kµ(dx) ≤ L|t− s|δ (2.9)

for all s, t ∈ [0, 1] and for some constants q ≥ 1, δ > 0, L > 0. Then for each p ≥ 1 and for each M-p-

admissible Gaussian random element X of S(C)′, the time-localization process X of X has a continuous

version.

Proof. As the measure Mx
0 (dω)(1 + |x|2)−kµ(dx) is finite, it suffices to prove the proposition for q = 1.

Fix an arbitrary ϕ ∈ S and denote Fs,t(ω) = ϕ(ω(t))− ϕ(ω(s)) for ω ∈ C. We have∫
C

|Fs,t|pdM̃ =
∫
Rd

∫
C0

(|Fs,t(x+ ω)| 12 (1 + |x|2)−
k
2 )(|Fs,t(x+ ω)|p− 1

2 (1 + |x|2)
3
2k

Mx
0 (dω)µ(dx)

≤
(∫
Rd

∫
C0

|Fs,t(x+ ω)(1 + |x|2)−kMx
0 (dω)µ(dx)

) 1
2

·
(∫
Rd

∫
C0

|Fs,t(x+ ω)|2p−1(1 + |x|2)3kMx
0 (dω)µ(dx)

) 1
2

.

By Remark 2.3, the second factor is bounded by a constant K(ϕ, p, k). On the other hand, the function

ϕ satisfies the Lipschitz condition, therefore by assumption (2.9) we obtain∫
C

|Fs,t|pdM ≤ K(ϕ, p, k, L)|t− s| δ2 .

As X is M-p-admissible and Gaussian, we have

EXM,p(F )2 ≤ K
∫
C

|F |pdM for all F ∈ SpM.

Joining these two estimations we obtain

E(〈X(t), ϕ〉 − 〈X(s), ϕ〉)2 = EXM,p(Fϕ,t − Fϕ,s)2 ≤ K1|t− s|
δ
2 .

We can assume EX = 0 (see [BGN]). Then

E(〈X(t), ϕ〉 − 〈X(s), ϕ〉)2n ≤ K1K(n)|t− s|nδ2 ,
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since 〈X(t), ϕ〉 − 〈X(s), ϕ〉 is a centered Gaussian random variable.

It suffices to fix n such that nδ
2 > 1, and then continuity of X follows from Kolmogorov’s criterion

and Mitoma’s theorem [Mi1]. 2

3. Convergence of time-localization processes

In what follows ⇒
f

denotes the weak convergence of finite-dimensional distributions and ⇒ denotes

weak (functional) convergence.

We start with the convergence of the finite-dimensional distributions. Some results on this subject

had been obtained for a very special case in [BG1].

3.1. PROPOSITION. Let Xn be admissible random elements of S(C)′, n = 1, 2, . . ., such that Xn ⇒ X,

where X is an M-p-admissible random element of S(C)′ for some admissible measure M and some p ≥ 1.

Denote

L = span{S(C) ∪ {Fϕ,t : ϕ ∈ S, t ∈ [0, 1]}},

and assume that F 7→ lim supn→∞E(|Xn(F )|∧1) as a function on L is continuous at F = 0 in the topology

of Lp(C, M̃). Then Xn⇒
f
X, where Xn,X denote the time-localization processes of Xn,X, respectively.

Proof. First observe that by Theorem 2.4 and Definition 2.5, Xn(F ) is well (and uniquely) defined for

any F ∈ L. Fix arbitrary t1, . . . , tj ∈ [0, 1], ϕ1, . . . , ϕj ∈ S and denote F = Fϕ1,t1 + . . .+Fϕj ,tj . We want

to prove that

Xn(F )⇒ X(F ). (3.1)

Fix a sequence Fm ∈ S(C),m = 1, 2, . . ., such that Fm → F in Lp(C, M̃) as m → ∞; its existence is

guaranteed by Theorem 2.4. By assumption, 〈Xn, Fm〉 ⇒ 〈X, Fm〉 as n → ∞,m = 1, 2, . . ., and also

〈X, Fm〉 ⇒ X(F ) as m → ∞ (the convergence is even in probability) since X is M-p-admissible. On the

other hand, for each ε ∈ (0, 1) we have

lim
m→∞

lim sup
n→∞

P (|〈Xn, Fm〉 − Xn(F )| > ε) ≤ 1
ε

lim
m→∞

lim sup
n→∞

E(|Xn(Fm − F )| ∧ 1) = 0,

since Fm − F ∈ L. Hence (3.1) follows by [B] (Theorem 4.2). 2

Observe that in this proposition the Xn’s are not necessarily associated with the same admissible

measure. On the other hand, we are not able to get rid of the (fortunately rather weak) assumption on

continuity of lim supn→∞E(|Xn(F )| ∧ 1) at zero.

3.2. COROLLARY. Let M be an admissible measure and assume that random elements Xn of S(C)′, n =

12



1, 2, . . ., satisfy the following property: there exist r > 0, p ≥ 1, β > 0 and K > 0 such that

sup
n
E|〈Xn, F 〉|r ≤ K

(∫
C

|F |pdM̃
)β

(3.2)

for all F ∈ S(C). Assume moreover that Xn ⇒ X. Then X is M-p-admissible and Xn⇒
f
X, where Xn,X

are the time-localization processes of Xn,X, respectively.

Proof. (3.2) obviously implies that each Xn is M-p-admissible. For each F ∈ S(C) we have 〈Xn, F 〉 ⇒

〈X, F 〉, hence

E|〈X, F 〉|r ≤ lim inf
n→∞

E|〈Xn, F 〉|r ≤ K
(∫

C

|F |pdM
)β

by [B], Theorem 5.3. Hence X is M-p-admissible as well. It is now clear that the convergence Xn⇒
f
X

follows from Proposition 3.1, since (3.2) extends to F ∈ SpM ⊃ L. 2

We now pass to the problem of tightness of time-localization processes. First of all we show that

in general weak convergence in S(C)′ does not imply tightness in C([0, 1],S ′) of the time-localization

processes, even if these processes do have continuous paths.

3.3. EXAMPLE. Fix ωn ∈ C0([0, 1],R) such that

supp(ωn) ⊂
(

0,
2
n

)
, ωn

(
1
n

)
= 1, ||ωn||∞ ≤ 1, n = 1, 2, . . . ,

and let ω = 0. Put Xn = δωn ,X = δω. It is clear that Xn,X are admissible (deterministic) elements of

S(C)′, and their time-localization (deterministic) processes are Xn = ωn, X = 0, respectively.

It is immediately seen that Xn 6⇒ X in C([0, 1],S ′(R)), since otherwise we would have ϕ(ωn) =

〈Xn, ϕ〉 ⇒ 〈X,ϕ〉 = ϕ(0) in C([0, 1],R) for each ϕ ∈ S(R), i.e., sup
t∈[0,1]

|ϕ(ωn(t)) − ϕ(0)| → 0, but this

obviously does not hold, e.g., if ϕ(1) = 1, ϕ(0) = 0.

On the other hand, Xn ⇒ X in S(C)′. Indeed, this convergence is equivalent to

F (ωn)→ F (ω) for each F ∈ S(C). (3.3)

Any such F has a chaos expansion F =
∑∞
j=0 Ij(fj), where the kernels fj are infinitely differentiable and

vanish on the boundary of [0, 1]j together with all their derivatives; in particular all their derivatives are

bounded. Moreover, we know from [NZ, GN] that the following explicit formula holds:

Ij(fj)(ωn)

=
[j/2]∑
i=0

(−1)i
j!2−i

(j − 2i)!i!

∫
[0,1]j−2i

∫
[0,1]i

∂j−2i

∂t1 . . . ∂tj−2i
fj(t1, . . . , tj−2i, u1, u1, . . . , ui, ui)

·ωn(t1) . . . ωn(tj−2i)du1 . . . duidt1 . . . dtj−2i.
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Hence Ij(fj)(ωn)→ 0 for all j > 0. As a consequence (3.3) holds since, obviously, F (ω) = I0(f0) and the

series
∑
j Ij(fj) converges uniformly on bounded subsets of C0 (see the proof of Theorem A of [GN]). 2

The main result of this section is the following theorem.

3.4. THEOREM. Let M be an admissible measure satisfying (2.9) with δ > 1. Then for each sequence

(Xn)n of random elements of S(C)′ such that

(i) for any ϕ ∈ S the real random variables {〈Xn, Fϕ,0〉, n = 1, 2, . . .} are tight;

(ii) condition (3.2) is satisfied with some p ≥ q, βδ > 1;

the family of time-localization processes {Xn}n of {Xn}n is tight in C([0, 1],S ′).

Proof. First observe that Fϕ,0 ∈ S(C) if ϕ ∈ S, hence condition (i) makes sense (independently of (ii)).

Condition (ii) implies that each Xn is M-p-admissible, so the localization process Xn exists.

Fix an arbitrary ϕ ∈ S. By Mitoma’s theorem [Mi2] it suffices to prove that the family of real valued

processes {〈Xn, ϕ〉}n is tight in C.

The argument is similar to that in the proof of Proposition 2.8. Again, for s, t ∈ [0, 1] we denote

Fs,t(ω) = ϕ(ω(t))− ϕ(ω(s)). We have, for 0 < ε < q,∫
C

|Fs,t|pdM̃

=
∫
Rd

∫
C0

(|Fs,t|q−ε(1 + |x|2)−k
q−ε
q )(|Fs,t|p−q+ε(1 + |x|2)k+k q−εq )dMx

0 µ(dx)

≤
(∫
Rd

∫
C0

|Fs,t|q(1 + |x|2)−kdMx
0 µ(dx)

) q−ε
q

·
(∫
Rd

∫
C0

|Fs,t|
(p−q+ε)q

ε (1 + k|2)
k
ε (2q−ε)dMx

0 µ(dx)
) ε
q

,

by the Hölder inequality. Now, by Remark 2.3 the second factor is bounded by a constant independent

of s, t. Hence, using the Lipschitz property of ϕ and assumption (2.9), we obtain∫
C

|Fs,t|pdM ≤ K(ε, k, p, q, L, ϕ)|t− s|δ(1−
ε
q ).

Inequality (3.2) extends to SpM, so

E|〈Xn(t), ϕ〉 − 〈Xn, (s), ϕ〉|r = E|Xn(Fϕ,t − Fϕ,s)|r

≤ K1

(∫
C

|Fϕ,t − Fϕ,s|pdM̃
)β
≤ K(ε, β, k, p, q, L,K1, ϕ)|t− s|βδ(1−

ε
q ).
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It suffices now to take ε such that βδ(1 − ε
q ) > 1 and apply the classical tightness criterion in C [B]

(Theorem 2.3). 2

3.5. REMARKS. (a) This theorem, applied to just one random element X, yields a continuity criterion

for the time-localization process in the non-Gaussian case.

(b) If assumption (ii) holds with r > 1, then assumption (i) is automatic.

Putting together Corollary 3.2 and Theorem 3.4 we obtain the following corollary:

3.6. COROLLARY. If M and (Xn)n satisfy the assumptions if Theorem 3.4 and Xn ⇒ X, then X is

M-p-admissible (with p of Corollary 3.2) and Xn ⇒ X in C([0, 1], S′), where X is the time-localization

process of X.

4. Examples.

We consider first the Poisson system of motions described in the Introduction. We assume throughout

that the measure µ satisfies condition (2.2).

It follows from the structure of Poisson systems that the mean and the second moments of Nn defined

by (1.4) are given by

E〈Nn, F 〉 =
∫
Rd
EF (ξx)nµ(dx) =

∫
Rd

(∫
C

FdMx

)
nµ(dx) = n

∫
C

FdM

F ∈ S(C), (4.1)

E〈Nn, F 〉〈Nn, G〉 =
∫
Rd
EF (ξx)G(ξx)nµ(dx)

=
∫
Rd

(∫
C

FGdMx

)
nµ(dx) = n

∫
C

FGdM, F,G ∈ S(C), (4.2)

provided that the integrals on the right-hand sides are well defined, and the characteristic functional of

Nn is given by

E exp{i〈Nn, F 〉} = exp
{
n

∫
Rd

(E exp{iF (ξx)} − 1)µ(dx)
}
, F ∈ S(C). (4.3)

To show this, the basic idea is that for A ∈ B(Rd) such that µ(A) < ∞, conditioned on Πn(A) = k, the

k points are distributed independently, each with distribution dµ/µ(A) (see also [ML]).

Hence, by (4.1) and (4.3) the characteristic functional of Xn defined by (1.5) is

E exp{i〈Xn, F 〉} = exp
{
n

∫
Rd
E

(
exp
{
i

1√
n
F (ξx)

}
− 1− 1√

n
F (ξx)

)
µ(dx)

}
, F ∈ S(C). (4.4)
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The proof of Theorem 1.2 is straightforward but we include if for completeness.

Proof of Theorem 1.2. By expanding the exponential inside the integral on the right-hand side of (4.4)

and using (4.1) and (4.2) we obtain

lim
n→∞

E exp{i〈Xn, F 〉} = exp
{
−1

2

∫
Rd
EF 2(ξx)µ(dx)

}
= exp

{
−1

2

∫
C

F 2dM

}
for all F ∈ S(C). This implies that Xn ⇒ X in S(C)′, by Lévy’s continuity theorem on nuclear spaces

[Me, Bo], where X is the centered Gaussian random element of S(C)′ determined by (1.6), (1.7). 2

An analogous proof gives the convergence of the finite-dimensional distributions in Assertion 1.1 under

the condition that the covariance functionals are well defined. (Note that formulas analogous to (4.1),

(4.2), (4.3) hold for Nn(t) defined by (1.1)). However, such a proof involves more cumbersome notation,

and moreover it is not needed for the examples since convergence of finite-dimensional distributions is a

consequence in our approach.

We will need the fourth moments of Xn (provided that they exist), which can be computed from the

characteristic functional (4.4) in a standard way:

E〈Xn, F 〉4 =
1
n

∫
C

F 4dM+ 3
(∫

C

F 2dM

)2

, F ∈ S(C). (4.5)

We now proceed to the time-localization and convergence problems.

4.1. THEOREM. Assertion 1.1 holds if the measure M defined by (1.7) is admissible and satisfies condi-

tion (2.9) with some q ≤ 4 and δ > 1.

Proof. Note that finiteness of
∫
C
|F |pdM for any p ≥ 1 is guaranteed by Theorem 2.4 (a). Therefore

Xn ⇒ X in S(C)′ by Theorem 1.2.

We have, using the Schwarz inequality,(∫
C

F 2dM̃

)2

=
(∫
Rd

∫
C0

F 2(x+ ω)Mx
0 (dω)µ(dx)

)2

=
(∫
Rd

∫
C0

F 2(x+ ω)(1 + |x|2)kMx
0 (dω)(1 + |x|2)−kµ(dx)

)2

≤ K

∫
Rd

∫
C0

F 4(x+ ω)(1 + |x|2)2kMx
0 (dω)(1 + |x|2)−kµ(dx)

= K

∫
C

F 4dM̃,

so, from (4.5),

sup
n
E〈Xn, F 〉4 ≤ K1

∫
C

F 4dM̃ for all F ∈ S(C). (4.6)
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Hence condition (3.2) is satisfied with r = p = 4 and β = 1. Therefore, by Theorem 2.7 and Corollary 3.2,

Xn and X have time-localization processes Xn and X (and Xn⇒
f
X). It is now clear that the localizations

Xn are the fluctuation processes defined by (1.2).

Now, by (4.6), Corollary 3.6 and Remark 3.5(b) we have Xn ⇒ X in C(0, 1],S ′).

It remains to prove that the covariance of X is given by (1.3).

For s, t ∈ [0, 1], ϕ,ψ ∈ S, fix sequences (Fn)n, (Gn)n, Fn, Gn ∈ S(C), such that Fn → Fϕ,s, Gn → Fψ,t

in L4(C, M̃) and in L2(C, M̃) simultanelously. It is possible to find such sequences by Proposition 2.6. X

is M-4-admissible, so 〈X, Fn〉 → 〈X, Fϕ,s〉 in probability and hence in L2(Ω) as well, since X is Gaussian.

The same holds for 〈X, Gn〉. Then,

Cov(〈X(s), ϕ〉, 〈X(t), ψ〉) = EX(Fϕ,s)X(Fψ,t)

= lim
n→∞

E〈X, Fn〉〈X, Gn〉 = lim
n→∞

∫
C

FnGndM =
∫
C

Fϕ,sFψ,tdM

=
∫
Rn
Eϕ(ξx(s))ψ(ξx(t))µ(dx),

by (1.6), (1.7), since M ≤ M̃. 2

The condition q ≤ 4 in Theorem 4.1 is suited to the examples below. In general it would be possible

to have any q ≥ 1 and to work with p-th moments of 〈Xn, F 〉 for some p ≥ q.

Now we consider the specific examples of motions ξx mentioned in the Introduction.

Diffusions.

Suppose that ξx satisfies the Itô stochastic differential equation

ξx(t) = x+
∫ t

0

b(s, ξx(s))ds+
∫ t

0

σ(s, ξx(s))dW (s), x ∈ Rd,

where W is a standard Wiener process in Rd.

We consider two cases:

(i) σ and b are bounded.

(ii) σ is bounded, b has (at most) linear growth, and µ satisfies∫
Rd
|x|2nµ(dx) ≤ Lnn!

for all n and some constant L.
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4.2. LEMMA. M defined by (1.7) is admissible and satisfies condition (2.9) with q = 4 and δ = 2.

Proof. Condition (2.3) for admissiblity is verifed in [BGN] (proof of Lemma 3.1.1). Now,∫
Rd

∫
C0

|ω(t)− w(s)|4Mx
0 (dω)(1 + |x|2)−kµ(dx)

=
∫
Rd
E|ξx(t)− ξx(s)|4(1 + |x|2)−kµ(dx),

and

E|ξx(t)− ξx(s)|4 ≤ 8E
∣∣∣∣∫ t

s

b(u, ξx(u))du
∣∣∣∣4 + 8E

∣∣∣∣∫ t

s

σ(u, ξx(u)dW (u)
∣∣∣∣4.

By Itô’s rule and Burkholder’s inequality,

E

∣∣∣∣∫ t

s

σ(u, ξx(u))dW (u)
∣∣∣∣4 ≤ K(t− s)2,

since σ is bounded. Therefore condition (2.9) holds in case (i).

For case (ii) we have, using Hölder’s inequality,∣∣∣∣∫ t

s

b(u, ξx(u)du
∣∣∣∣4 ≤ K1

(∫ t

s

(1 + |ξx(u)|)du
)4

≤ K1(t− s)3

∫ t

s

(1 + |ξx(u)|)4du

≤ K2(t− s)3

∫ t

s

(1 + |x|4 + |ξx(u)− x|4)du

≤ K2(t− s)4(1 + |x|4 + ||ξx − x||4∞),

and the argument in the final part of the proof of Lemma 3.1.1 of [BGN] shows that∫
Rd

(1 + |x|4 + E||ξx − x||4∞)(1 + |x|2)−kµ(dx) <∞,

so condition (2.9) holds. 2

We have inmmediately from Theorem 4.1 and Lemma 4.2 :

4.3. PROPOSITION. Assertion 1.1 holds for the Poisson system of diffusions.

Fractional Brownian motions.

Let ξx be the fBm with Hurst parameter h ∈ (0, 1) started from x ∈ Rd.

First we have to show that ξ (≡ ξ0) satisfies the required maximal inequality (2.5).

4.4. LEMMA. For all n ≥ 1,

E sup
t∈[0,1]

|ξ(t)|n ≤ Kn
√
n!,
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where K is a constant depending on h and d.

Proof. It suffices to do the proof for d = 1 and n even. We have

E|ξ(t)− ξ(s)|2n = an|t− s|2nh,

where an = (2n− 1)(2n− 3) . . . 1. Let n be large enough so that nh > 1.

Define the random variable

η =
∫ 1

0

∫ 1

0

[(ξ(t)− ξ(s))|t− s|− 3
2n ]2ndsdt

=
∫ 1

0

∫ 1

0

|ξ(t)− ξ(s)|2n|t− s|−3dsdt.

The first integral expression is written with a view towards the application of the lemma of Garsia,

Rodemich and Rumsey.

We have

Eη = an

∫ 1

0

∫ 1

0

|t− s|2nh−3dsdt = 2an
∫ 1

0

∫ t

0

u2nh−3dudt

=
an

(nh− 1)(2nh− 1)
,

hence η < ∞ a.s. Applying the lemma of Garsia, Rodemich and Rumsey [GRR] (the version in [SV],

page 60) we obtain

|ξ(t)− ξ(0)| ≤ 8
∫ 2t

0

(
16η
γu2

) 1
2n 3

2n
u

3
2n−1du,

where γ is a universal constant, so

|ξ(t)| ≤ K1η
1

2n
1
n

∫ 2t

0

u
1

2n du

= 2K1η
1

2n (2t)
1

2n .

Therefore

sup
t∈[0,1]

|ξ(t)|2n ≤ K2n
2 η,

and

E sup
t∈[0,1]

|ξ(t)|2n ≤ K2n
2 Eη = K2n

2

an
(nh− 1)(2nh− 1)

≤ K2n
3

(2n− 1)!
2n−1(n− 1)!

≤ K2n
√

(2n)!,
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where we have used the Stirling formula in the last step. 2

It is also possible to obtain the maximal inequality of Lemma 4.4 using recent martingale results from

[NV], but only for h > 1
2 .

4.5. COROLLARY. M defined by (1.7) is admissible and satisfies condition (2.9).

Proof. Condition (2.5) follows from Lemma 4.4.

Now, ∫
Rd

∫
C0

|ω(t)− ω(s)|qM0(dω)(1 + |x|2)−kµ(dx)

= KE|ξ(t)− ξ(s)|q ≤ K(q)E(|ξ(t)− ξ(s)|2)q/2

= K1(q)|t− s|hq,

hence condition (2.9) is satified with q such that hq > 1. 2

4.6. PROPOSITION. Assertion 1.1 holds for the Poisson systems of fBm’s and the covariance (1.3) is

given by (1.10), (1.11).

Proof. The convergence follows from Theorem 4.1 and Corollary 4.5.

It remains only to obtain the explicit expressions (1.10), (1.11) for the covariance. This follows from

formula (1.3) and the lemma below. 2

4.7. LEMMA. For ϕ,ψ ∈ S,

Eϕ(ξx(t)) =
1

(2πt2h)d/2

∫
Rd
ϕ(y1, . . . , yd) exp

{
− 1

2t2h

d∑
i=1

(yi − xi)2

}
dy1, . . . , dyd, (4.7)

Eϕ(ξx(s))ψ(ξx(t))

= (π[(t− s)2h(2t2h + 2s2h − (t− s)2h)− (t2h − s2h)2])−d

·
∫
R2d

ϕ(y1, . . . , yd)ψ(z1, . . . , zd)

· exp
{
−2[(t− s)2h(2t2h + 2s2h − (t− s)2h)− (t2h − s2h)2]−1

·
(
t2h

d∑
i=1

(yi − xi)2 + s2h
d∑
i=1

(zi − xi)2 − (t2h + s2h − (t− s)2h)
d∑
i=1

(yi − xi)(zi − xi)
)}

dy1 . . . dyddz1 . . . dzd, s < t. (4.8)
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Proof. (4.7) is clear. We prove (4.8). Denote for brevity

ch(s, t) =
1
2

[t2h + s2h − (t− s)2h], s < t.

(ξx(s), ξx(t)) is a 2d-dimensional centered Gaussian random vector with covariance matrix

V =

 s2hI ch(s, t)I

ch(s, t)I t2hI

 ,

where I is the d× d identity matrix.

It is easy to see that the inverse of V is

V −1 =
1

(st)2h − ch(s, t)2

 t2hI −ch(s, t)I

−ch(s, t)I s2hI


The determinant of V is given by

|V | = 1
4d

[(t− s)2h(2t2h + 2s2h − (t− s)2h)− (t2h − s2h)2]d.

This is proved as follows. V can be written as V = BBT (where BT is the transpose of B), and therefore

|V | = |B|2, where

B =

 (s2h − ch(s, t)2t−2h)1/2I ch(s, t)t−hI

0 thI

 .

The result then follows from

Eϕ(ξx(s))ψ(ξx(t))

=
∫
R2d

ϕ(x1 + y1, . . . , xd + yd)ψ(x1 + z1, . . . , xd + zd)

· 1
(2π)d|V | 12

exp
{
−1

2
(y1, . . . , yd, z1, . . . , zd)V −1(y1, . . . , yd, z1, . . . , zd)T

}
dy1 . . . dyddz1 . . . dzd. 2

We now consider a model which is a generalization of the one investigated by Itô [I1]. Let ξ1, ξ2, . . .

be a sequence of independent, identically distributed processes in Rd with initial distribution µ. Again

we assume that the processes are diffusions or fBm’s, as in the case of the Poisson systems above.

In the trajectorial approach we define the empirical measure

Nn =
n∑
i=1

δξi
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and the fluctuation

Xn =
1√
n

(Nn − ENn),

where

ENn = nM, dM = dMxµ(dx).

Everything works in a similar way to the Poisson system. The only difference is that instead of (4.5)

we use the following estimation for the fourth moment:

E〈Xn, F 〉4 ≤ K1(〈M, F 2〉2 + 〈M, F 〉4) +K2
1
n

(〈M, F 4〉+ 〈M, F 〉4), F ∈ S(C),

which is easily obtained.

The trajectorial fluctuation limit is given the following theorem.

4.8. THEOREM. Xn converges weakly in S(C)′ as n → ∞ to a centered Gaussian random element X

with covariance functional

Cov(〈X, F 〉, 〈X, G〉) =
∫
C

FGdM−
∫
C

FdM

∫
C

GdM, F,G ∈ S(C).

The time-localization of Xn is clearly the process Xn(t) = 1√
n

(Nn(t) − ENn(t)), t ∈ [0, 1], where

Nn(t) =
∑n
i=1 δξi(t). The temporal fluctuation limit is the following result.

4.9. THEOREM. Xn converges weakly in C([0, 1],S ′) as n → ∞ to the centered Gaussian process

X = {X(t), t ∈ [0, 1]} with covariance functional

Cov(〈X(s), ϕ〉, 〈X(t), ψ〉)

=
∫
Rd
Eϕ(ξx(s))ψ(ξx(t))µ(dx)−

∫
Rd
Eϕ(ξx(s))µ(dx)

∫
Rd
Eψ(ξx(t))µ(dx), ϕ, ψ ∈ S.

The process X in Theorem 4.9 is the time-localization of X in Theorem 4.8. For the case of diffusions

the time-localization was obtained in [BGN]. For the model with fBm’s an explicit expression for the

covariance of X is obtained from formulas (4.7) and (4.8).

Note that the same admissible measure dM = dMxµ(dx) is useful for both models, although they are

quite distinct. The only difference is the meaning of the measure µ in each case.

4.10. REMARK. The previous results are also valid for other processes ξ, provided that
∫
F 2dM < ∞

for all F ∈ S(C) in the case of Theorem 4.8, and the measure M satisfies the required conditions in the

case of Theorem 4.9.
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[I2] Itô, K., Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces. SIAM,

1984.

[K] Kolmogorov, A. N., Wiener’s spiral and some other interesting curves in Hilbert space, Dokl. Akad.

Nauk SSSR 26 (1940), 115–118.

[M] Mandelbrot, B. B., The Fractal Geometry of Nature, Freeman, San Francisco, 1982.

[MVN] Mandelbrot, B. B. and Van Ness, J. W., Fractional Brownian motions, fractional noises and appli-

cations, SIAM Review 10 (1968), 422–437.
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[Tr] Treves, F., Topological Vector Spaces, Distributions and Kernels, Academic Press, 1967.

25


